Involvement of p21, Phosphoinositide 3-Kinase, and Vacuolar ATPase in Phagocytosis of Bacteria and Erythrocytes by Entamoeba histolytica: Suggestive Evidence for Coincidental Evolution of Amebic Invasiveness
نویسنده
چکیده
Trophozoites of Entamoeba histolytica, the protozoan parasite that causes amebic dysentery, phagocytose bacteria in the colonic lumen and erythrocytes (RBC) in host tissues. Because tissue invasion is an evolutionary dead end, it is likely that amebic pathogenicity is coincidentally selected, i.e., the same methods used to kill bacteria in the colonic lumen are used by parasites to damage host cells and cause disease. In support of this idea, the amebic lectin and pore-forming peptide are involved in binding and killing, respectively, bacteria and host epithelial cells. Here amebic phagocytosis of bacteria, RBC, and mucin-coated beads was disrupted by overexpression of E. histolytica p21, a ras-family protein involved in selection of sites of actin polymerization, which had been mutated to eliminate its GTPase activity. p21 transformants were also defective in capping and cytokinesis, while pinocytosis of fluorescent dextrans was not affected. Wortmannin, a fungal inhibitor of phosphoinositide 3-kinase, markedly inhibited phagocytosis of bacteria, RBC, and mucin-coated beads by wild-type amebae. In contrast to p21 overexpression, wortmannin abolished amebic pinocytosis of dextrans but had no inhibitory effects on capping. Inhibition of amebic vacuolar acidification by bafilomycin also decreased bacterial and RBC uptake. These results, which demonstrate similarities between mechanisms of phagocytosis of bacteria and RBC by amebae and macrophages, support the idea of coincidental selection of amebic genes encoding proteins that mediate destruction of host cells.
منابع مشابه
Entamoeba histolytica and Entamoeba dispar utilize externalized phosphatidylserine for recognition and phagocytosis of erythrocytes.
Amebic erythrophagocytosis is characteristic of invasive amebiasis, and mutants deficient in erythrocyte ingestion are avirulent. We sought to understand the molecular mechanisms underlying erythrocyte phagocytosis by Entamoeba histolytica. Following adherence to amebae, erythrocytes became round and crenulated, and phosphatidylserine (PS) was exposed on their outer membrane leaflets. These cha...
متن کاملInhibition of Amebic Lysosomal Acidification Blocks Amebic Trogocytosis and Cell Killing
Entamoeba histolytica ingests fragments of live host cells in a nibbling-like process termed amebic trogocytosis. Amebic trogocytosis is required for cell killing and contributes to tissue invasion, which is a hallmark of invasive amebic colitis. Work done prior to the discovery of amebic trogocytosis showed that acid vesicles are required for amebic cytotoxicity. In the present study, we show ...
متن کاملEntamoeba histolytica cell surface calreticulin binds human c1q and functions in amebic phagocytosis of host cells.
Phagocytosis of host cells is characteristic of tissue invasion by the intestinal ameba Entamoeba histolytica, which causes amebic dysentery and liver abscesses. Entamoeba histolytica induces host cell apoptosis and uses ligands, including C1q, on apoptotic cells to engulf them. Two mass spectrometry analyses identified calreticulin in amebic phagosome preparations, and, in addition to its func...
متن کاملEhPAK, a member of the p21-activated kinase family, is involved in the control of Entamoeba histolytica migration and phagocytosis.
Entamoeba histolytica migration is essential for the development of amoebiasis, a human disease characterised by invasion and destruction of tissues. Amoebic motility requires both polarisation of the cell and formation of a predominant pseudopod. As p21-activated kinases PAKs are known to regulate eukaryotic cell motility and morphology, we investigated the role of PAK in E. histolytica. We sh...
متن کاملAmoebic PI3K and PKC Is Required for Jurkat T Cell Death Induced by Entamoeba histolytica
The enteric protozoan parasite Entamoeba histolytica is the causative agent of human amebiasis. During infection, adherence of E. histolytica through Gal/GalNAc lectin on the surface of the amoeba can induce caspase-3-dependent or -independent host cell death. Phosphorylinositol 3-kinase (PI3K) and protein kinase C (PKC) in E. histolytica play an important function in the adhesion, killing, or ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997